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Summaw 

The evolution of a small-amplitude localized voidage disturbance through a two-dimensional fluidized bed is 
considered. A solution of the full initial-value problem reveals that the stability condition for the uniform state is 
found to be in agreement with that given by Needham and Merkin [1] for narrow beds. Further, it is shown that 
for a given flow rate for which the uniform state is unstable, more and more cross-channel modes become 
unstable with increasing bed width, in accordance with the observations of Didwania and Homsy [3]. Finally a 
solution is obtained for F ~ 1, where F is the Froude number. The resulting Fourier series is summed 
numerically, which enables the evolution of the initial disturbance to be followed by plotting contours of 
constant voidage with increasing time. This shows that in narrow beds the motion is primarily one-dimensional, 
confirming the supposition of [1], with cross-stream variations becoming more dominant as the bed width 
increases. 

1. Introduction 

In  this paper  we consider the two-dimensional evolution of  a small-amplitude localized 
voidage disturbance through a fluidized bed. Primarily we are able to show that the 
uniformly fluidized state is stable only when P0 >/C02 where P0 is the coefficient of  the 
interparticle collisional pressure term, C O = (n + 1 ) ( 1 -  Co) is the linearized propagat ion 
speed of  the zeroth cross-channel mode  and a0 is the uniform voidage for the given flow 
rate. This result is in agreement with the stability condit ion for the uniform state in 
narrow beds (Needham and Merkin [1]). Also, when conditions are such that the uniform 
state is unstable, i.e. at flow rates for which P0 < C2 it is shown that, as the width of  the 
bed increases, more  and more cross-channel modes, with increasing wave number  become 
unstable. This is in agreement with the observations of  E1-Kaissy and Homsy  [2] and 
Didwania  and H o m s y  [3], who noted that with increasing flow rate, planar  voidage waves 
develop strong cross-channel instabilities in the form of  transverse voidage oscillations 
which eventually wrap around each other, forming small bubble-like clusters of  high 
voidage. 

For  conditions when the uniform state is stable, i.e. when is o >/Co 2, we are able to write 
the full solution of  the initial value problem as a Fourier  series. This series is then 
examined in detail in the case when F << 1 (where F is the Froude  number);  a condit ion 
which is satisfied in most  gas fluidized beds. This solution is summed numerically for 
given localized initial conditions for varying o = d / h ,  where d is the bed width and h is the 
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vertical length scale of the initial disturbance. This shows that for o << 1 the motion is 
essentially one-dimensional, consisting of a horizontal band of high voidage propagating 
vertically upwards through the bed with speed C O , leaving behind the rest of the initial 
disturbance which remains almost stationary. With o of O(1) a horizontal band of high 
voidage still propagates upwards through the bed, but this is now followed by a 
slower-moving "mushroom" shaped region of high voidage which is itself surrounded at 
the sides and below by regions of low voidage. For o >> 1, the propagating band is seen to 
disappear, with all the motion" being concentrated into the propagation of a 
"mushroom"-shaped region of high voidage upwards through the bed. 

When conditions are such that the uniform state is unstable, it is further suggested that 
the above results may be interpreted as the initiation of slugging in beds with o << 1, 
confirming with [1], while in larger width beds (o >> 1) this may represent the initial 
development of the "bubbling" regime. 

2. Equations of motion 

The equations of motion for fluidized beds in which p//& << 1 (where p! and Ps are the 
fluid and particle densities respectively) are, after neglecting terms of O(p//p,) 

0E 
+ div(Eu)  = 0, (1) 

~E 
at t- div(1 - E)v = 0, (2) 

[av 1 & ( l - E )  - ~ - + ( v . V ) v  =fl(E)(u-v)-(1-E)&gi-vP,+/z ,V2v,  (3) 

vp= - B ( e ) ( u -  v). (4) 

Here u is the fluid phase velocity, v the particle phase velocity, E the voidage, p the fluid 
phase pressure, /~ the particle phase viscosity and i a unit vector directed vertically 
upwards, fl(E) is the drag coefficient per unit bed volume, and P,(E) the particle phase 
pressure, both of which depend on E. The equations are closed once this functional 
dependence is proposed. Following [1] we take, 

fl(E) = D°(1 - E )  (5) 
, 

Ps( E)= Po(1 - E), (6) 

where D O is the Stokes drag on a single particle, V e is the volume of a single particle and 
n --- 3.0 for a gas fluidized bed. Po is a constant, having the dimensions of pressure and is 
of the order of 10 dynes cm-2 to be consistent with values used by Anderson and Jackson 
[4]. The functional forms for fl and Ps given by (5) and (6) are suggested by correlations of 
experimentally determined results, with the nature of the solution not being critically 
dependent on the exact forms taken for fl and Ps provided only they have the same 
qualitative forms as (5) and (6). 
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Detailed derivations of the equations of motion are given by Anderson and Jackson [5] 
and Murray [6], in which the physical significance of each term is discussed in some detail. 

3. Boundary conditions 

In this paper we consider the two-dimensional flow bounded by two vertical plane walls. 
We introduce a Cartesian coordinate system (x, y)  where x measures distance vertically 
upwards and y distance horizontally. The boundary walls are then fixed at y = 0 and 
y = d. The coordinate system is illustrated in Fig. 1. 

For an "inviscid" flow, in which/& = 0, the appropriate boundary conditions on the 
side walls are zero normal fluid and particle velocities. It can then be immediately deduced 
from Eqn. (3) that the appropriate condition on E is 

aE 
w ~  Oy 0 on y = O  and y = d .  (7) 

On taking into account the particle phase viscosity, we require a further boundary 
condition on the side walls. This is obtained as a no-slip condition on the particles at the 
walls [4]. Therefore, on writing u = (u 1, u2) and v =  (vl, v2) the boundary conditions on 
the fluid and particle velocities are 

uz=O on y = O  and y=d, (8) 

v l = v  2 = 0  on y = O  and y = d .  (9) 

The boundary conditions (7)-(9), together with the condition that, as Ixl ~ oo, the flow is 
undisturbed, are now sufficient to determine the solution completely when suitable initial 
conditions are imposed. 

Fluidized region 

qy 

y=d y= 

Figure 1. The coordinate system. 
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4. The initial-value problem 

The simplest solution of Eqns. (1)-(3) satisfying the boundary conditions (7)-(9) is that in 
which the bed is uniformly fluidized, where 

u=Uoi, v = 0  and E = c  o (10) 

with U 0 = [ (1 -  Co)psg]/flo and fl0 = fl(%). This uniform state is used to introduce the 
following dimensionless quantities, 

u = U o u ' ,  v = Uov ' ,  x = h x ' ,  

t= h_~,t ,, p =  2 , p~U 0 P~ and 
u0 

y= by', 

psUo fl, 
f l=  h 

where h is the length scale of the imposed voidage disturbance in the vertical direction. On 
substituting into Eqns. (1)-(3) and on dropping primes for convenience we obtain the 
following set of dimensionless equations 

%---E t + div(Eu) = 0, (11) 

~E 
- O---t- + div((1 - E)v)  = 0, (12) 

(~v  ) 1 ( l - E )  -~-+v. Vv =f l (E)(u-v)  ( l - E )  F i - x7es - ~ V 2v, (13) 

where now 

# ( e )  = (1 - Ps(E) =/~o(1 - E)  with fro - Po 
psU~' 

F =  U2/(gh) is the Froude number and R = (psUoh)/l~s is the particle-phase Reynolds 
number. 

In terms of the dimensionless quantities the uniform state is u = i, v = 0 and E = c o. 
We now examine the evolution of a small-amplitude voidage disturbance imposed on 

this uniform state at t = 0. The initial conditions are taken to be 

E(x ,  y, O) = 'o + ag(x,  y) ,  (14) 

v(x,  y, 0) = 0, (15) 

u(x,  y, O) = i + ato(x, y) (16) 

where [a I << 1 and oJ = (o~ 1, £02). To be consistent with Eqns. (11) and (12) we must also 
have 

div[(% + ag)(i + aa~)] = 0. (17) 
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A solution of Eqns. (11)-(13) is sought in the form 

E = c o + aE,  v = a~, u = u + a~. (18) 

Expressions (18) are now substituted into Eqns. (11)-(13) and, on retaining terms of O(a) 
only, the following linearised equations for the perturbed quantities E, ~ and ff are 
obtained, 

0t7 ot7 
0-t- + -~x + Co div 9 = 0, (19) 

o f  
0t + - ( 1 - C o ) d i v e = 0 ,  (20) 

(1 - ab (1 F% ) {o)-~7 = (~-~)+(f l ;+l)F. i+PoVE+R- 'V2v (21) 

where/3~ = (d f l / dE)%.  The boundary conditions (7) and (9) become 

0E - - = 0  on y = 0  and y = a ,  (22) 0y 

u 2 = v , = 6 2 = 0  on y = 0  and y = o ,  (23) 

where o = d/h, while the initial conditions (14)-(16) become 

E(x ,y ,O)=g(x ,y) ,  (24) 

e(x,y,  0 ) = 0 ,  (25) 

~(x,y,  O)=oJ(x,y). (26) 

Condition (17) also reduces to 

~% 0 % _  1 0g (27) 
O---x- + Oy {o Ox" 

Taking the divergence of Eqn. (21) and using Eqns. (19) and (20) to eliminate div ~ and 
div ,5 we obtain a single equation in/T, namely 

F a2~ A OE B OE a aP - --ff+Fgov:E+ R(1gco) at(v E) (28) 

where A = (n + 1 ) (1-  {0)/c0 and B = 1/%. Equation (28) is to be solved subject to 
boundary condition (22) together with initial condition (24). Equation (28) is second order 
in t, we therefore require a further initial condition. This is provided via Eqn. (20) as 

0g 
3t 0 at t = 0 .  (29) 
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We look for a solution of Eqn. (28), separable in y, of the form 

ff~ (x, y, t)=~p (x, t)~ (y). 

Substituting (30) for/~ into Eqn. (28) gives, after re-arrangement, 

F~t2 + A~x + B@t _ FffoO2~x 2 F ~3~/ 
R(1 - %) Ox20t _ Fff 0 d2qT 

(30)  

~ +  1 ~ q~ dy  2 

R(1 - %) 0t 

where ~, is a real constant. For ~ we have 

d~ff X 2 _ 
dy2 +~00  ~ = 0  (311 

subject to d~/dy = 0 on y = 0 and y = o. On solving (31) for q~we find 

= - -  (n=O,  1,2 . . . .  ), (32) 
0 

~ n ( y ) = D ,  cos( -~  -~) ( n = 0 , 1 , 2  . . . .  ). (33) 

where the D, are arbitrary constants. ~ is then a solution of the equation 

-( 
FOZ~ +A~x + B+ Ot 2 

n2~r2F ) a~ 
R(1 - % ) 0  2 Ot 

= r r °  3x ----S- R ( 1  - Co) Ox23t o 2 ~ .  (34)  

Defining ~ ( x ,  t) to be the n th eigensolution of Eqn. (34), the general solution of Eqn. (28) 
for E may be written as a Fourier cosine series in the form 

ff.(x,y,t)=~Po(x,t)+ ~ ~ ( x ,  t) cos(~--~) • 
n = l  

(35)  

5. Stability and the solution when Po > Co 2 

We now consider the temporal stability of the uniform state through Eqn. (34). Clearly, if 
any of the eigenfunctions ~,(x, t) grow in time, the uniform state will be unstable. We 
look for a solution of Eqn. (34) in the form 

~kn(x, t) = ~n(k ) e ikx- '~"t  (36) 
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where k, the wave number, is real. Substitution for ~k, from (36) into Eqn. (34) leads to a 
quadratic equation for % in terms of k, namely 

.o,( ..... ) R(1 - % )  + B + R(l=--~o)O 2 o~. + FPo k2 + Aik + o ~  O. (37) 

A necessary and sufficient condition for the uniform state to be stable is that 
Re(o~,(k)) >/0 for all k > 0 and all n = 0, 1, 2 . . . .  Following the method of Needham and 
Merkin [1], it can be shown that Re(w,(k) >/0 if and only if 

A 2 
/~>~ 2 - S . (k ) .  (38) 

l+~--~k~ R(1-,o) ~ + R ( I - ~ o  ~ 

The uniform state is then stable provided 

f i o ) [ S n ( k ) ] m a  x for 0 ~ < k < m ,  n = 0 , 1 , 2  . . . .  (39) 

An inspection of (38) reveals that (39) is satisfied if and only if 

/~ >~ (A)2  = CoZ (40) 

with C O = (n + 1 ) (1-  Co). Thus the uniform state is stable only when condition (40) is 
satisfied. It should be noted that this overall stability condition is the same as that derived 
in [1] for the stability of one-dimensional perturbations imposed on a uniformly fluidized 
bed. 

Further, for a given flow rate such t ha t / s  o < C 2 there is an integer N(o) such that all 
cross-channel modes with n < N are unstable while all cross-channel modes with n >~ N + 1 
remain stable and that N(o) ~ 0 as C 2 ~ if0 being a monotonic increasing function of C o. 

Also, for Co fixed N is a monotonic increasing function of o. Thus for fixed Co > ~00 an 
increasing number of cross-channel modes become unstable as the width of the bed is 
increased. 

When /~ > C 2 the general solution of Eqn. (34) can be written in terms of Fourier 
integrals 

Co(x, ,) = f_~A. (~,) e'""-"-'d~ +./~3. (~,)e'"x- ""d~, (41) 

where A, (k )  and B,(k)  are arbitrary functions of k and ~0, and f~, are the two (complex) 
roots of Eqn. (37). Using (35) the complete solution may then be written as 

"(x,y,,)=f'~Ao(k)e'*'-'"'dk+ fLBoIk)e'*'-""d~ 
+ e"-°.',,,] cos(- l. 

(42) 
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The initial conditions can now be applied to (42). Applying condition (24) and using the 
orthogonality of the cos(n~ry/o) on 0 ~< y ~< o we obtain 

2 ° f~_~(A.(k)+B.(k))eikXdk=ofog(X,y  ) cost/n~ry\T)de, (43) 

Inverting the Fourier transforms gives 

A " ( k ) + B " ( k ) = l  (44) 

In a similar way we can apply condition (22) to obtain the equation 

A.( k )o~.( k ) + B.( k )f~.( k ) = 0. (45) 

Equations (44) and (45) can be solved for the A. and B., resulting in 

~n  ~ O 

A.(k)  = r o ( f ~ -  %)f_~ oo(f0 g(x,y)cos(~-Y-)dy)e-ikXdx, (46) 

~ . ( k )  = A.,~. 
a .  (47) 

The complete solution is then given by (42) together with (46) and (47). 

6. The solution for F << 1 

In many gas-fluidized beds F<< 1, and with this approximation, Eqn. (34) for the 
eigenfunctions ~, reduces to 

~----~ + n2,n.2F 3x = 0. (48) 
B +  

R(I -Co)O 2 

Although the highest time derivative has been neglected in obtaining Eqn. (48), a 
consideration of a small-time solution when t is of O(F), as in [1], reveals that the 
appropriate initial condition to be applied to the solution of Eqn. (48) is still condition 
(24). 

The general solution of Eqn. (48) is given by 

~p,(x, t ) = f ~ ( x  - C.t) (49) 

where 

c.= A 
n27r2F 

B +  
R(1 - % ) 0  2 

(n = o, 1, 2 . . . .  ).  (50) 
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After applying condition (24) the full solution is then given by 

ff" (x'y'  t )=f°(x-C°t )+ ~ fn(x--Cnt)COS( n~r-'---~y 
n = l  

(51) 

where 

fo(~)=l fo°g(~, ~)d~, 2 fo ° n~'q f~(~) = o  g(~, ~) cos d~/. (52) 
Or 

To illustrate the nature of solution (51) we choose a particular initial voidage distribu- 
tion g(x, y) given by 

_ x  2 4 Y ( o - y ) e  , (53) g(x, y) =--~ 

On substituting for this g(x, y) into (52), we find, after integrating that 

2 _~2 
e , 

16 
f,(~) = n2~r 2 e -~ (n even), 

0 (n odd). 
(54) 

Using (54), (51) becomes 

ff~(x'y't)=2e-(x-c°t)2-1--~67r2 .=1 ~" e-(~-c2"'?(2n) 2 c o s ( - ~ )  ( 5 5 )  

It can easily be shown that the series in (55) is convergent, and can be summed 
numerically for the voidage perturbation E for increasing time. However, before proceed- 
ing with the numerical calculation o f / 7  it is instructive to consider first the two limiting 
c a s e s o < < l  a n d o > > l .  

When o << 1 and examination of (50) shows that C n << 1 for n = 1, 2, 3 . . . .  and (55) 
can then be approximated by 

f f . (x,y, t)=2 e-~X-Co')2-~e-X2(1-~-+6y2 ) (56) 

for 0 < y <  o and Ix[ < o0. The development as described by (56) is that of a planar 
voidage front propagating up the bed with speed C O with the remainder of the initial 
disturbance remaining stationary. 

When o >> 1, (51) gives C. = C O for n = 1, 2, 3 . . . .  and (55) can then be approximated 
by 

4y ff. (x, y, t ) = ~ ( o - -  y) e ~x-c°t)2 (57) 



128 

14 

12 

10 

8 

6 

4 

2 

0 

- 2  

- 4  

10 

6 

4 - 

- 2  - 

- 4  - 

4 

2 

0 

- 2  

- 4  

2 

0 

-2 

- 4  

Figure  2. Con tou r  p lo ts  o f / ~  for o = 0.25 at  t = 0, 1, 3 and  5. 
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130 

14 

12 

10 

8 

6 

4 

2 

0 

- 2  

- 4  

8 

6 

4 

2 

0 

- 2  

- 4  

6 - 

4 

2 -  

0 -  

- 2  

- 4  

F i g u r e  4. C o n t o u r  p l o t s  o f / ~  f o r  o = 8 a t  t = 1, 3 a n d  5. 
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for 0 ~<y ~< o and Ixl < ~ .  (57) shows that the initial disturbance propagates unchanged 
upwards through the bed with speed C O . 

We now present results obtained by summing the Fourier series (55) numerically with 
% = 0.4, R = 1.0, F = 0.1, n = 3 and for o = 0.25, 1.0 and 8.0. In each case we sum the 
series for 0 ~< y ~< o and - 5 . 0  ~< x ~< 15.0 at 20 equally spaced points in the y-direction and 
40 equally spaced points in the x-direction. In all cases results are shown for times t = 1.0, 
3.0 and 5.0. The computations were not carried out at large times as it can be shown, [1], 
that (55) is not uniformly valid in t, and breaks down when t is of O(F-~), with the 
neglected effects of diffusion or instability and dispersion being felt on this longer time 
scale. Each of the above cases are shown in Figs. 2, 3 and 4 respectively, where contours of 
constant E are plotted in the region 0 ~<y ~< o and - 5 . 0  ~< x ~< 15.0; the contours show E 
between - 1 and 1 in steps of 0.2. Also shown in Fig. 2 is the initial voidage perturbation 
as given by (53). This has the same overall shape in each of the other two cases and is not 
repeated. 

The development of E" for o = 0.25 (Fig. 2) clearly confirms the behaviour as given by 
(56). It can be seen that the initial voidage perturbation breaks up into two distinct parts. 
There is a plane voidage front propagating upwards with a uniform speed (this is further 
confirmed by calculations performed at intermediate time steps not shown in the figure) 
with estimates of this speed giving a value very close to C o as given by (50), (C o = 0.24 in 
this case). These is also a region of voidage perturbation, two-dimensional in character, 
which remains behind, propagating upwards only extremely slowly. For o = 1 (Fig. 3) the 
picture remains very much the same, with a plane voidage region ahead of a two-dimen- 
sional disturbance which is now propagating upward with increased speed. For o = 8 (Fig. 
4) the picture is different. Here the voidage perturbation remains two-dimensional in 
nature throughout and propagates upwards at a constant speed. By t = 5 we can see the 
development of a "mushroom-shaped" region of high voidage, the shape which is 
characteristic of "bubbles" in fluidized beds. 

7. Conclusion 

We have shown that the overall condition for stability of a fluidized bed, namely that 
if0 >7 C02, is unaltered when two-dimensional effects are introduced. Also, when this 
condition is not satisfied we have shown that an increasing number of cross-channel 
modes become unstable as the width of the bed is increased. We have been able to solve 
the linear equations governing small-amplitude voidage perturbations and for the particu- 
lar case of small Froude number (a situation which pertains in most gas-fluidized beds) 
obtaining this solutions as a Fourier cosine series which can easily be summed numeri- 
cally. These results show that the nature of the flow changes as the width of the bed is 
increased. For narrow beds the voidage perturbations are essentially one-dimensional, 
confirming the validity of the one-dimensional analysis used previously by the authors [1], 
in discussing the full nonlinear problem. For wide beds we can detect the onset of the 
genuine two-dimensional nature of the flow, with the appearance of the "mushroom"- 
shaped regions of high voidage characteristic of a "bubbling" bed. 

The work presented here needs to be taken much further before a full understanding of 
the nature of the transition from uniform to bubbling conditions, seen on increasing the 
flow rate, can be gained. The present analysis is restricted to small voidage perturbations 
and is valid only for values of time of 0(1); as shown in [1] the expansion breaks down 
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when t is of  O ( F - 1 ) ,  F << 1. However ,  given the above restrictions, the present  work gives 
a good start ing point  for unders tanding the development  of  two-dimensional  voidage 
disturbances,  with, perhaps  the most  interesting question still remaining being in what  
happens  to such dis turbances at flow rates for which the uni form state is unstable. Can the 
non-l inear  effects re-stabilize the flow into a new quasi-s teady state, as happens  in the case 
of  purely one-dimensional  flow, or does some other  essentially uns teady picture manifest  
itself? Observat ions  of  fluidized beds suggest that  the former  is the case with " b u b b l e s "  
(regions of  high voidage) propagat ing  upwards  at a s teady rate (this is hinted at by the 
results shown in Fig. 4). This question is at present  under  further  investigation. 
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